aboutsummaryrefslogtreecommitdiff
path: root/src/FbTk/Luamm.hh
blob: 01fb8b1a8f11b0e1e8366650637830495cb42824 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
// luamm:  C++ binding for lua
// Copyright (C) 2010 - 2011 Pavel Labath
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.

#ifndef FBTK_LUAMM_HH
#define FBTK_LUAMM_HH

#include <assert.h>
#include <cstring>
#include <memory>
#include <stdexcept>

#include <lauxlib.h>
#include <lua.h>
#include <lualib.h>

#include "RefCount.hh"
#include "Slot.hh"

namespace lua {
    class state;

    typedef lua_Integer integer;
    typedef lua_Number number;

    enum {
        ENVIRONINDEX = LUA_ENVIRONINDEX,
        GLOBALSINDEX = LUA_GLOBALSINDEX,
        REGISTRYINDEX = LUA_REGISTRYINDEX
    };

    enum {
        GCSTOP		 = LUA_GCSTOP,
        GCRESTART	 = LUA_GCRESTART,
        GCCOLLECT	 = LUA_GCCOLLECT,
        GCCOUNT		 = LUA_GCCOUNT,
        GCCOUNTB	 = LUA_GCCOUNTB,
        GCSTEP		 = LUA_GCSTEP,
        GCSETPAUSE	 = LUA_GCSETPAUSE,
        GCSETSTEPMUL = LUA_GCSETSTEPMUL
    };

    enum {
        MULTRET = LUA_MULTRET
    };

    enum Type {
        TBOOLEAN	   = LUA_TBOOLEAN,
        TFUNCTION	   = LUA_TFUNCTION,
        TLIGHTUSERDATA = LUA_TLIGHTUSERDATA,
        TNIL		   = LUA_TNIL,
        TNONE		   = LUA_TNONE,
        TNUMBER		   = LUA_TNUMBER,
        TSTRING		   = LUA_TSTRING,
        TTABLE		   = LUA_TTABLE,
        TTHREAD		   = LUA_TTHREAD,
        TUSERDATA	   = LUA_TUSERDATA
    };

    // we reserve one upvalue for the function pointer
    inline int upvalueindex(int n)
    { return lua_upvalueindex(n+1); }

    /*
     * Lua error()s are wrapped in this class when rethrown into C++ code. what() returns the
     * error message. push_lua_error() pushes the error onto lua stack. The error can only be
     * pushed into the same state it was generated in.
     */
    class exception: public std::runtime_error {
        state *L;
        FbTk::RefCount<const bool> L_valid;
        int key;

        static std::string get_error_msg(state *L);

        exception& operator=(const exception &other); // not implemented

    public:
        explicit exception(state *l);
        exception(const exception &other);
        virtual ~exception() throw();

        void push_lua_error(state *l);
    };

    class not_string_error: public std::runtime_error {
    public:
        not_string_error()
            : std::runtime_error("Cannot convert value to a string")
        {}
    };

    // the name says it all
    class syntax_error: public lua::exception {
    public:
        syntax_error(state *L)
            : lua::exception(L)
        {}
    };

    // loadfile() encountered an error while opening/reading the file
    class file_error: public lua::exception {
    public:
        file_error(state *L)
            : lua::exception(L)
        {}
    };

    // double fault, lua encountered an error while running the error handler function
    class errfunc_error: public lua::exception {
    public:
        errfunc_error(state *L)
            : lua::exception(L)
        {}
    };

    // thrown by check* functions when they detect an invalid argument
    class check_error: public std::runtime_error {
    public:
        check_error(const std::string &msg)
            : std::runtime_error(msg)
        {}
    };

    // a fancy wrapper around lua_State
    class state {
        lua_State *cobj;

        // destructor for C++ objects stored as lua userdata
        template<typename T>
        static int destroy_cpp_object(lua_State *l)
        {
            T *ptr = static_cast<T *>(lua_touserdata(l, -1));
            assert(ptr);
            try {
                // throwing exceptions in destructors is a bad idea
                // but we catch (and ignore) them, just in case
                ptr->~T();
            }
            catch(...) {
            }
            return 0;
        }

        bool safe_compare(lua_CFunction trampoline, int index1, int index2);
        void do_pushclosure(int n);
        void throw_check_error(int narg, Type expected) throw(lua::check_error) __attribute__((noreturn));

        /**
         * The pointed-to value is true if this object still exists. We need this because the
         * exceptions have to know if they may reference it to remove the saved lua exception. If
         * this object is destroyed then the exception was already collected by the garbage
         * colletor and referencing this would generate a segfault.
         */
        FbTk::RefCount<bool> valid;

    public:
        state();
        ~state() { *valid = false; lua_close(cobj); }

        FbTk::RefCount<const bool> get_valid() const { return valid; }

        /*
         * Lua functions come in three flavours
         * a) functions that never throw an exception
         * b) functions that throw only in case of a memory allocation error
         * c) functions that throw other kinds of errors
         *
         * Calls to type a functions are simply forwarded to the C api.
         * Type c functions are executed in protected mode, to make sure they don't longjmp()
         * over us (and our destructors). This add a certain amount overhead. If you care about
         * performance, try using the raw versions (if possible).
         * Type b functions are not executed in protected mode atm. as memory allocation errors
         * don't happen that often (as opposed to the type c, where the user get deliberately set
         * a metamethod that throws an error). That means those errors will do something
         * undefined, but hopefully that won't be a problem.
         *
         * Semantics are mostly identical to those of the underlying C api. Any deviation is
         * noted in the respective functions comment. The most important difference is that
         * instead of return values, we use exceptions to indicate errors.	The lua and C++
         * exception mechanisms are integrated. That means one can throw a C++ exception and
         * catch it in lua (with pcall). Lua error()s can be caught in C++ as exceptions of type
         * lua::exception.
         */

        // type a, never throw
        int absindex(int index) throw() { return index<0 && -index<=gettop() ? gettop()+1+index : index; }
        bool getmetatable(int index) throw() { return lua_getmetatable(cobj, index); }
        int gettop() throw() { return lua_gettop(cobj); }
        void insert(int index) throw() { lua_insert(cobj, index); }
        bool isboolean(int index) throw() { return lua_isboolean(cobj, index); }
        bool isfunction(int index) throw() { return lua_isfunction(cobj, index); }
        bool islightuserdata(int index) throw() { return lua_islightuserdata(cobj, index); }
        bool isnil(int index) throw() { return lua_isnil(cobj, index); }
        bool isnone(int index) throw() { return lua_isnone(cobj, index); }
        bool isnumber(int index) throw() { return lua_isnumber(cobj, index); }
        bool isstring(int index) throw() { return lua_isstring(cobj, index); }
        bool istable(int index) throw() { return lua_istable(cobj, index); }
        bool isuserdata(int index) throw() { return lua_isuserdata(cobj, index); }
        void pop(int n = 1) throw() { lua_pop(cobj, n); }
        void pushboolean(bool b) throw() { lua_pushboolean(cobj, b); }
        void pushinteger(integer n) throw() { lua_pushinteger(cobj, n); }
        void pushlightuserdata(void *p) throw() { lua_pushlightuserdata(cobj, p); }
        void pushnil() throw() { lua_pushnil(cobj); }
        void pushnumber(number n) throw() { lua_pushnumber(cobj, n); }
        void pushvalue(int index) throw() { lua_pushvalue(cobj, index); }
        void rawget(int index) throw() { lua_rawget(cobj, index); }
        void rawgeti(int index, int n) throw() { lua_rawgeti(cobj, index, n); }
        bool rawequal(int index1, int index2) throw() { return lua_rawequal(cobj, index1, index2); }
        void replace(int index) throw() { lua_replace(cobj, index); }
        // lua_setmetatable returns int, but docs don't specify it's meaning :/
        int setmetatable(int index) throw() { return lua_setmetatable(cobj, index); }
        void settop(int index) throw() { return lua_settop(cobj, index); }
        bool toboolean(int index) throw() { return lua_toboolean(cobj, index); }
        integer tointeger(int index) throw() { return lua_tointeger(cobj, index); }
        number tonumber(int index) throw() { return lua_tonumber(cobj, index); }
        void* touserdata(int index) throw() { return lua_touserdata(cobj, index); }
        Type type(int index) throw() { return static_cast<Type>(lua_type(cobj, index)); }
        // typename is a reserved word :/
        const char* type_name(Type tp) throw() { return lua_typename(cobj, tp); }
        void unref(int t, int ref) throw() { return luaL_unref(cobj, t, ref); }

        // type b, throw only on memory allocation errors
        // checkstack correctly throws bad_alloc, because lua_checkstack kindly informs us of
        // that sitution
        void checkstack(int extra) throw(std::bad_alloc);
        void createtable(int narr = 0, int nrec = 0) { lua_createtable(cobj, narr, nrec); }
        const char* gsub(const char *s, const char *p, const char *r) { return luaL_gsub(cobj, s, p, r); }
        bool newmetatable(const char *tname) { return luaL_newmetatable(cobj, tname); }
        void newtable() { lua_newtable(cobj); }
        void *newuserdata(size_t size) { return lua_newuserdata(cobj, size); }
        // Functor can be anything that FbTk::Slot can handle, everything else remains
        // identical. We also provide a specialized, lightweight version for simple functors
        template<typename Functor>
        void pushclosure(const Functor &fn, int n);
        void pushclosure(int (*fn)(state *), int n);
        template<typename Functor>
        void pushfunction(const Functor &fn) { pushclosure(fn, 0); }
        void pushstring(const char *s) { lua_pushstring(cobj, s); }
        void pushstring(const char *s, size_t len) { lua_pushlstring(cobj, s, len); }
        void pushstring(const std::string &s) { lua_pushlstring(cobj, s.c_str(), s.size()); }
        void rawgetfield(int index, const char *k) throw(std::bad_alloc);
        void rawset(int index) { lua_rawset(cobj, index); }
        void rawsetfield(int index, const char *k) throw(std::bad_alloc);
        void rawseti(int index, int n) { lua_rawseti(cobj, index, n); }
        int ref(int t) { return luaL_ref(cobj, t); }
        // len recieves length, if not null. Returned value may contain '\0'
        const char* tocstring(int index, size_t *len = NULL) { return lua_tolstring(cobj, index, len); }
        // Don't use pushclosure() to create a __gc function. The problem is that lua calls them
        // in an unspecified order, and we may end up destroying the object holding the
        // FbTk::Slot before we get a chance to call it. This pushes a function that simply
        // calls ~T when the time comes. Only set it as __gc on userdata of type T.
        template<typename T>
        void pushdestructor() { lua_pushcfunction(cobj, &destroy_cpp_object<T>); }

        // type c, throw everything but the kitchen sink
        // call() is a protected mode call, we don't allow unprotected calls
        void call(int nargs, int nresults, int errfunc = 0);
        void checkargno(int argno) throw(lua::check_error);
        std::string checkstring(int narg) throw(lua::check_error, std::bad_alloc);
        void *checkudata(int narg, const char *tname) throw(lua::check_error, std::bad_alloc);
        template<typename T>
        T *checkudata(int narg, const char *tname) throw(lua::check_error, std::bad_alloc) { return static_cast<T *>(checkudata(narg, tname)); }
        void concat(int n);
        bool equal(int index1, int index2);
        int gc(int what, int data);
        void getfield(int index, const char *k);
        void gettable(int index);
        void getglobal(const char *name) { getfield(GLOBALSINDEX, name); }
        bool lessthan(int index1, int index2);
        void loadfile(const char *filename) throw(lua::syntax_error, lua::file_error, std::bad_alloc);
        void loadstring(const char *s, const char *chunkname = NULL) throw(lua::syntax_error, std::bad_alloc) { loadstring(s, strlen(s), chunkname); }
        void loadstring(const char *s, size_t len, const char *chunkname = NULL) throw(lua::syntax_error, std::bad_alloc);
        void loadstring(const std::string &s, const char *chunkname = NULL) throw(lua::syntax_error, std::bad_alloc) { loadstring(s.c_str(), s.length(), chunkname); }
        bool next(int index);
        // register is a reserved word :/
        template<typename Functor>
        void register_fn(const char *name, const Functor &f) { pushfunction(f); setglobal(name); }
        void setfield(int index, const char *k);
        void setglobal(const char *name) { setfield(GLOBALSINDEX, name); }
        void settable(int index);
        // lua_tostring uses NULL to indicate conversion error, since there is no such thing as a
        // NULL std::string, we throw an exception. Returned value may contain '\0'
        std::string tostring(int index) throw(lua::not_string_error);
        // allocate a new lua userdata of appropriate size, and create a object in it
        // pushes the userdata on stack and returns the pointer
        template<typename T>
        T* createuserdata();
        template<typename T, typename Arg1>
        T* createuserdata(const Arg1 &arg1);
        template<typename T, typename Arg1, typename Arg2>
        T* createuserdata(const Arg1 &arg1, const Arg2 &arg2);
        template<typename T, typename Arg1, typename Arg2, typename Arg3>
        T* createuserdata(const Arg1 &arg1, const Arg2 &arg2, const Arg3 &arg3);
    };

    /*
     * Can be used to automatically pop temporary values off the lua stack on exit from the
     * function/block (e.g. via an exception). It's destructor makes sure the stack contains
     * exactly n items. The constructor initializes n to l.gettop()+n_, but that can be later
     * changed with the overloaded operators. It is an error if stack contains less than n
     * elements at entry into the destructor.
     *
     * Proposed stack discipline for functions is this:
     * - called function always pops parameters off the stack.
     * - if functions returns normally, it's return values are on the stack.
     * - if function throws an exception, there are no return values on the stack.
     * The last point differs from lua C api, which return an error message on the stack. But
     * since we have exception.what() for that, putting the message on the stack is not
     * necessary.
     */
    class stack_sentry: private FbTk::NotCopyable {
        state *L;
        int n;

    public:
        explicit stack_sentry(state &l, int n_ = 0) throw()
            : L(&l), n(l.gettop()+n_)
        { assert(n >= 0); }

        ~stack_sentry()			throw() { assert(L->gettop() >= n); L->settop(n); }

        void operator++()		throw() { ++n; }
        void operator--()		throw() { --n; assert(n >= 0); }
        void operator+=(int n_) throw() { n+=n_; }
        void operator-=(int n_) throw() { n-=n_; assert(n >= 0); }
    };

    template<typename T>
    T* state::createuserdata()
    {
        stack_sentry s(*this);

        void *t = newuserdata(sizeof(T));
        new(t) T;
        ++s;
        return static_cast<T *>(t);
    }

    template<typename T, typename Arg1>
    T* state::createuserdata(const Arg1 &arg1)
    {
        stack_sentry s(*this);

        void *t = newuserdata(sizeof(T));
        new(t) T(arg1);
        ++s;
        return static_cast<T *>(t);
    }

    template<typename T, typename Arg1, typename Arg2>
    T* state::createuserdata(const Arg1 &arg1, const Arg2 &arg2)
    {
        stack_sentry s(*this);

        void *t = newuserdata(sizeof(T));
        new(t) T(arg1, arg2);
        ++s;
        return static_cast<T *>(t);
    }

    template<typename T, typename Arg1, typename Arg2, typename Arg3>
    T* state::createuserdata(const Arg1 &arg1, const Arg2 &arg2, const Arg3 &arg3)
    {
        stack_sentry s(*this);

        void *t = newuserdata(sizeof(T));
        new(t) T(arg1, arg2, arg3);
        ++s;
        return static_cast<T *>(t);
    }

    template<typename Functor>
    void state::pushclosure(const Functor &fn, int n)
    {
        checkstack(2);

        createuserdata<FbTk::SlotImpl<Functor, int, state *> >(fn);
        do_pushclosure(n);
    }
}

#endif // FBTK_LUAMM_HH