diff options
Diffstat (limited to 'libs/lua/src/lopcodes.h')
-rw-r--r-- | libs/lua/src/lopcodes.h | 268 |
1 files changed, 268 insertions, 0 deletions
diff --git a/libs/lua/src/lopcodes.h b/libs/lua/src/lopcodes.h new file mode 100644 index 0000000..41224d6 --- /dev/null +++ b/libs/lua/src/lopcodes.h | |||
@@ -0,0 +1,268 @@ | |||
1 | /* | ||
2 | ** $Id: lopcodes.h,v 1.125.1.1 2007/12/27 13:02:25 roberto Exp $ | ||
3 | ** Opcodes for Lua virtual machine | ||
4 | ** See Copyright Notice in lua.h | ||
5 | */ | ||
6 | |||
7 | #ifndef lopcodes_h | ||
8 | #define lopcodes_h | ||
9 | |||
10 | #include "llimits.h" | ||
11 | |||
12 | |||
13 | /*=========================================================================== | ||
14 | We assume that instructions are unsigned numbers. | ||
15 | All instructions have an opcode in the first 6 bits. | ||
16 | Instructions can have the following fields: | ||
17 | `A' : 8 bits | ||
18 | `B' : 9 bits | ||
19 | `C' : 9 bits | ||
20 | `Bx' : 18 bits (`B' and `C' together) | ||
21 | `sBx' : signed Bx | ||
22 | |||
23 | A signed argument is represented in excess K; that is, the number | ||
24 | value is the unsigned value minus K. K is exactly the maximum value | ||
25 | for that argument (so that -max is represented by 0, and +max is | ||
26 | represented by 2*max), which is half the maximum for the corresponding | ||
27 | unsigned argument. | ||
28 | ===========================================================================*/ | ||
29 | |||
30 | |||
31 | enum OpMode {iABC, iABx, iAsBx}; /* basic instruction format */ | ||
32 | |||
33 | |||
34 | /* | ||
35 | ** size and position of opcode arguments. | ||
36 | */ | ||
37 | #define SIZE_C 9 | ||
38 | #define SIZE_B 9 | ||
39 | #define SIZE_Bx (SIZE_C + SIZE_B) | ||
40 | #define SIZE_A 8 | ||
41 | |||
42 | #define SIZE_OP 6 | ||
43 | |||
44 | #define POS_OP 0 | ||
45 | #define POS_A (POS_OP + SIZE_OP) | ||
46 | #define POS_C (POS_A + SIZE_A) | ||
47 | #define POS_B (POS_C + SIZE_C) | ||
48 | #define POS_Bx POS_C | ||
49 | |||
50 | |||
51 | /* | ||
52 | ** limits for opcode arguments. | ||
53 | ** we use (signed) int to manipulate most arguments, | ||
54 | ** so they must fit in LUAI_BITSINT-1 bits (-1 for sign) | ||
55 | */ | ||
56 | #if SIZE_Bx < LUAI_BITSINT-1 | ||
57 | #define MAXARG_Bx ((1<<SIZE_Bx)-1) | ||
58 | #define MAXARG_sBx (MAXARG_Bx>>1) /* `sBx' is signed */ | ||
59 | #else | ||
60 | #define MAXARG_Bx MAX_INT | ||
61 | #define MAXARG_sBx MAX_INT | ||
62 | #endif | ||
63 | |||
64 | |||
65 | #define MAXARG_A ((1<<SIZE_A)-1) | ||
66 | #define MAXARG_B ((1<<SIZE_B)-1) | ||
67 | #define MAXARG_C ((1<<SIZE_C)-1) | ||
68 | |||
69 | |||
70 | /* creates a mask with `n' 1 bits at position `p' */ | ||
71 | #define MASK1(n,p) ((~((~(Instruction)0)<<n))<<p) | ||
72 | |||
73 | /* creates a mask with `n' 0 bits at position `p' */ | ||
74 | #define MASK0(n,p) (~MASK1(n,p)) | ||
75 | |||
76 | /* | ||
77 | ** the following macros help to manipulate instructions | ||
78 | */ | ||
79 | |||
80 | #define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0))) | ||
81 | #define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \ | ||
82 | ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP)))) | ||
83 | |||
84 | #define GETARG_A(i) (cast(int, ((i)>>POS_A) & MASK1(SIZE_A,0))) | ||
85 | #define SETARG_A(i,u) ((i) = (((i)&MASK0(SIZE_A,POS_A)) | \ | ||
86 | ((cast(Instruction, u)<<POS_A)&MASK1(SIZE_A,POS_A)))) | ||
87 | |||
88 | #define GETARG_B(i) (cast(int, ((i)>>POS_B) & MASK1(SIZE_B,0))) | ||
89 | #define SETARG_B(i,b) ((i) = (((i)&MASK0(SIZE_B,POS_B)) | \ | ||
90 | ((cast(Instruction, b)<<POS_B)&MASK1(SIZE_B,POS_B)))) | ||
91 | |||
92 | #define GETARG_C(i) (cast(int, ((i)>>POS_C) & MASK1(SIZE_C,0))) | ||
93 | #define SETARG_C(i,b) ((i) = (((i)&MASK0(SIZE_C,POS_C)) | \ | ||
94 | ((cast(Instruction, b)<<POS_C)&MASK1(SIZE_C,POS_C)))) | ||
95 | |||
96 | #define GETARG_Bx(i) (cast(int, ((i)>>POS_Bx) & MASK1(SIZE_Bx,0))) | ||
97 | #define SETARG_Bx(i,b) ((i) = (((i)&MASK0(SIZE_Bx,POS_Bx)) | \ | ||
98 | ((cast(Instruction, b)<<POS_Bx)&MASK1(SIZE_Bx,POS_Bx)))) | ||
99 | |||
100 | #define GETARG_sBx(i) (GETARG_Bx(i)-MAXARG_sBx) | ||
101 | #define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx)) | ||
102 | |||
103 | |||
104 | #define CREATE_ABC(o,a,b,c) ((cast(Instruction, o)<<POS_OP) \ | ||
105 | | (cast(Instruction, a)<<POS_A) \ | ||
106 | | (cast(Instruction, b)<<POS_B) \ | ||
107 | | (cast(Instruction, c)<<POS_C)) | ||
108 | |||
109 | #define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP) \ | ||
110 | | (cast(Instruction, a)<<POS_A) \ | ||
111 | | (cast(Instruction, bc)<<POS_Bx)) | ||
112 | |||
113 | |||
114 | /* | ||
115 | ** Macros to operate RK indices | ||
116 | */ | ||
117 | |||
118 | /* this bit 1 means constant (0 means register) */ | ||
119 | #define BITRK (1 << (SIZE_B - 1)) | ||
120 | |||
121 | /* test whether value is a constant */ | ||
122 | #define ISK(x) ((x) & BITRK) | ||
123 | |||
124 | /* gets the index of the constant */ | ||
125 | #define INDEXK(r) ((int)(r) & ~BITRK) | ||
126 | |||
127 | #define MAXINDEXRK (BITRK - 1) | ||
128 | |||
129 | /* code a constant index as a RK value */ | ||
130 | #define RKASK(x) ((x) | BITRK) | ||
131 | |||
132 | |||
133 | /* | ||
134 | ** invalid register that fits in 8 bits | ||
135 | */ | ||
136 | #define NO_REG MAXARG_A | ||
137 | |||
138 | |||
139 | /* | ||
140 | ** R(x) - register | ||
141 | ** Kst(x) - constant (in constant table) | ||
142 | ** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x) | ||
143 | */ | ||
144 | |||
145 | |||
146 | /* | ||
147 | ** grep "ORDER OP" if you change these enums | ||
148 | */ | ||
149 | |||
150 | typedef enum { | ||
151 | /*---------------------------------------------------------------------- | ||
152 | name args description | ||
153 | ------------------------------------------------------------------------*/ | ||
154 | OP_MOVE,/* A B R(A) := R(B) */ | ||
155 | OP_LOADK,/* A Bx R(A) := Kst(Bx) */ | ||
156 | OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */ | ||
157 | OP_LOADNIL,/* A B R(A) := ... := R(B) := nil */ | ||
158 | OP_GETUPVAL,/* A B R(A) := UpValue[B] */ | ||
159 | |||
160 | OP_GETGLOBAL,/* A Bx R(A) := Gbl[Kst(Bx)] */ | ||
161 | OP_GETTABLE,/* A B C R(A) := R(B)[RK(C)] */ | ||
162 | |||
163 | OP_SETGLOBAL,/* A Bx Gbl[Kst(Bx)] := R(A) */ | ||
164 | OP_SETUPVAL,/* A B UpValue[B] := R(A) */ | ||
165 | OP_SETTABLE,/* A B C R(A)[RK(B)] := RK(C) */ | ||
166 | |||
167 | OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */ | ||
168 | |||
169 | OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)] */ | ||
170 | |||
171 | OP_ADD,/* A B C R(A) := RK(B) + RK(C) */ | ||
172 | OP_SUB,/* A B C R(A) := RK(B) - RK(C) */ | ||
173 | OP_MUL,/* A B C R(A) := RK(B) * RK(C) */ | ||
174 | OP_DIV,/* A B C R(A) := RK(B) / RK(C) */ | ||
175 | OP_MOD,/* A B C R(A) := RK(B) % RK(C) */ | ||
176 | OP_POW,/* A B C R(A) := RK(B) ^ RK(C) */ | ||
177 | OP_UNM,/* A B R(A) := -R(B) */ | ||
178 | OP_NOT,/* A B R(A) := not R(B) */ | ||
179 | OP_LEN,/* A B R(A) := length of R(B) */ | ||
180 | |||
181 | OP_CONCAT,/* A B C R(A) := R(B).. ... ..R(C) */ | ||
182 | |||
183 | OP_JMP,/* sBx pc+=sBx */ | ||
184 | |||
185 | OP_EQ,/* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */ | ||
186 | OP_LT,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */ | ||
187 | OP_LE,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */ | ||
188 | |||
189 | OP_TEST,/* A C if not (R(A) <=> C) then pc++ */ | ||
190 | OP_TESTSET,/* A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */ | ||
191 | |||
192 | OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */ | ||
193 | OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */ | ||
194 | OP_RETURN,/* A B return R(A), ... ,R(A+B-2) (see note) */ | ||
195 | |||
196 | OP_FORLOOP,/* A sBx R(A)+=R(A+2); | ||
197 | if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/ | ||
198 | OP_FORPREP,/* A sBx R(A)-=R(A+2); pc+=sBx */ | ||
199 | |||
200 | OP_TFORLOOP,/* A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2)); | ||
201 | if R(A+3) ~= nil then R(A+2)=R(A+3) else pc++ */ | ||
202 | OP_SETLIST,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */ | ||
203 | |||
204 | OP_CLOSE,/* A close all variables in the stack up to (>=) R(A)*/ | ||
205 | OP_CLOSURE,/* A Bx R(A) := closure(KPROTO[Bx], R(A), ... ,R(A+n)) */ | ||
206 | |||
207 | OP_VARARG/* A B R(A), R(A+1), ..., R(A+B-1) = vararg */ | ||
208 | } OpCode; | ||
209 | |||
210 | |||
211 | #define NUM_OPCODES (cast(int, OP_VARARG) + 1) | ||
212 | |||
213 | |||
214 | |||
215 | /*=========================================================================== | ||
216 | Notes: | ||
217 | (*) In OP_CALL, if (B == 0) then B = top. C is the number of returns - 1, | ||
218 | and can be 0: OP_CALL then sets `top' to last_result+1, so | ||
219 | next open instruction (OP_CALL, OP_RETURN, OP_SETLIST) may use `top'. | ||
220 | |||
221 | (*) In OP_VARARG, if (B == 0) then use actual number of varargs and | ||
222 | set top (like in OP_CALL with C == 0). | ||
223 | |||
224 | (*) In OP_RETURN, if (B == 0) then return up to `top' | ||
225 | |||
226 | (*) In OP_SETLIST, if (B == 0) then B = `top'; | ||
227 | if (C == 0) then next `instruction' is real C | ||
228 | |||
229 | (*) For comparisons, A specifies what condition the test should accept | ||
230 | (true or false). | ||
231 | |||
232 | (*) All `skips' (pc++) assume that next instruction is a jump | ||
233 | ===========================================================================*/ | ||
234 | |||
235 | |||
236 | /* | ||
237 | ** masks for instruction properties. The format is: | ||
238 | ** bits 0-1: op mode | ||
239 | ** bits 2-3: C arg mode | ||
240 | ** bits 4-5: B arg mode | ||
241 | ** bit 6: instruction set register A | ||
242 | ** bit 7: operator is a test | ||
243 | */ | ||
244 | |||
245 | enum OpArgMask { | ||
246 | OpArgN, /* argument is not used */ | ||
247 | OpArgU, /* argument is used */ | ||
248 | OpArgR, /* argument is a register or a jump offset */ | ||
249 | OpArgK /* argument is a constant or register/constant */ | ||
250 | }; | ||
251 | |||
252 | LUAI_DATA const lu_byte luaP_opmodes[NUM_OPCODES]; | ||
253 | |||
254 | #define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 3)) | ||
255 | #define getBMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3)) | ||
256 | #define getCMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3)) | ||
257 | #define testAMode(m) (luaP_opmodes[m] & (1 << 6)) | ||
258 | #define testTMode(m) (luaP_opmodes[m] & (1 << 7)) | ||
259 | |||
260 | |||
261 | LUAI_DATA const char *const luaP_opnames[NUM_OPCODES+1]; /* opcode names */ | ||
262 | |||
263 | |||
264 | /* number of list items to accumulate before a SETLIST instruction */ | ||
265 | #define LFIELDS_PER_FLUSH 50 | ||
266 | |||
267 | |||
268 | #endif | ||